Operations on Power Series Related to Taylor Series

In this problem, we perform elementary operations on Taylor series – term by term differentiation and integration – to obtain new examples of power series for which we know their sum. Suppose that a function f has a power series representation of the form:

$$f(x) = a_0 + a_1(x - c) + a_2(x - c)^2 + \dots = \sum_{n=0}^{\infty} a_n(x - c)^n$$

convergent on the interval (c-R, c+R) for some R. The results we use in this example are:

• (Differentiation) Given f as above, f'(x) has a power series expansion obtained by differentiating each term in the expansion of f(x):

$$f'(x) = a_1 + a_2(x - c) + 2a_3(x - c) + \dots = \sum_{n=1}^{\infty} na_n(x - c)^{n-1}$$

• (Integration) Given f as above, $\int f(x) dx$ has a power series expansion obtained by by integrating each term in the expansion of f(x):

$$\int f(x) dx = C + a_0(x - c) + \frac{a_1}{2}(x - c)^2 + \frac{a_2}{3}(x - c)^3 + \dots = C + \sum_{n=0}^{\infty} \frac{a_n}{n+1}(x - c)^{n+1}$$

for some constant C depending on the choice of antiderivative of f.

Questions:

- 1. Find a power series representation for the function $f(x) = \arctan(5x)$. (Note: $\arctan x$ is the inverse function to $\tan x$.)
- 2. Use power series to approximate

$$\int_0^1 \sin(x^2) \, dx$$

(Note: $\sin(x^2)$ is a function whose antiderivative is not an elementary function.)

Operations on Power Series Related to Taylor Series

In this problem, we perform elementary operations on Taylor series – term by term differentiation and integration – to obtain new examples of power series for which we know their sum. Suppose that a function f has a power series representation of the form:

$$f(x) = a_0 + a_1(x - c) + a_2(x - c)^2 + \dots = \sum_{n=0}^{\infty} a_n(x - c)^n$$

convergent on the interval (c-R, c+R) for some R. The results we use in this example are:

• (Differentiation) Given f as above, f'(x) has a power series expansion obtained by differentiating each term in the expansion of f(x):

$$f'(x) = a_1 + a_2(x - c) + 2a_3(x - c) + \dots = \sum_{n=1}^{\infty} na_n(x - c)^{n-1}$$

• (Integration) Given f as above, $\int f(x) dx$ has a power series expansion obtained by by integrating each term in the expansion of f(x):

$$\int f(x) dx = C + a_0(x - c) + \frac{a_1}{2}(x - c)^2 + \frac{a_2}{3}(x - c)^3 + \dots = C + \sum_{n=0}^{\infty} \frac{a_n}{n+1}(x - c)^{n+1}$$

for some constant C depending on the choice of antiderivative of f.

Questions:

- 1. Find a power series representation for the function $f(x) = \arctan(5x)$. (Note: $\arctan x$ is the inverse function to $\tan x$.)
- 2. Use power series to approximate

$$\int_0^1 \sin(x^2) \, dx$$

(Note: $\sin(x^2)$ is a function whose antiderivative is not an elementary function.)

1.
$$\frac{d}{dx} \arctan(5x) = \frac{5}{1 + 25x^2}$$

= $5\sum_{n=0}^{\infty} (-25x^2)^n$
arctan(5x) = $= 5(1 - 5^2x^2 + 5^4x^4 + \cdots)$
arctan(5x) = $\int 5(1 - 5^2x^2 + 5^4x^4 + \cdots) dx$
= $= 5(1 - 5^2x^2 + 5^4x^4 + \cdots) dx$

tany =
$$5x = 1 + (5x)^2$$

$$sec^2 y \frac{dy}{dx} = 5$$

$$\frac{dy}{dx} = \frac{5}{sec^2 y} = \frac{5}{1 + 25x^2}$$

$$\frac{1}{1-x} = 1 + x + x^2 + \cdots$$

$$= C + \sum_{n=0}^{\infty} \frac{(-1)^n (5x)^{2n+1}}{2n+1}$$

when
$$x=0$$
, $arctan 0=0 \Rightarrow C=0$

$$\arctan(5x) = \sum_{n=0}^{\infty} \frac{(-1)^n (5x)^{2n+1}}{2n+1}$$

$$f(x) = \sin x$$

$$f'(x) = \cos x$$

$$f''(x) = -\sin x$$

$$f''(x) = -\cos x$$

sinta x-ズナズ

2.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$

$$\sin x^1 = x^2 - \frac{\chi^6}{3!} + \frac{\chi^{10}}{5!} + \cdots$$

$$f(x) = \sin x^{2}$$

$$f'(x) = 2\pi \cos x^{2}$$

$$f''(x) = 2\cos x^{2} + 2x \cdot 2\pi (-\sin x)$$

$$\int_{0}^{1} \sin x^{2} dx = \int_{0}^{1} x^{2} - \frac{x^{6}}{3!} + \frac{x^{10}}{5!} + \cdots dx$$

$$= \frac{x^{3}}{3} - \frac{x^{7}}{3! \cdot 7} + \frac{x^{11}}{5! \cdot 11} + \cdots \int_{0}^{1}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n \chi^{4n+3}}{(2n+1)!4n+3} \bigg|_{0}^{1}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!4n+3}$$

$$\Rightarrow \int_{0}^{1} \sin x^{2} dx \approx \frac{1}{3} - \frac{1}{6 \cdot 7}$$

$$= \frac{14}{42} - \frac{1}{42}$$

$$= \frac{13}{42}$$