Operations on Power Series Related to Taylor Series

In this problem, we perform elementary operations on Taylor series — term by term differen-
tiation and integration — to obtain new examples of power series for which we know their sum.
Suppose that a function f has a power series representation of the form:

oo

f(z) = ag + ai(z — ¢) + as(z — ¢)? Z (x — )"

convergent on the interval (¢ — R, c+ R) for some R. The results we use in this example are:

e (Differentiation) Given f as above, f’(x) has a power series expansion obtained by by differ-
entiating each term in the expansion of f(z):

() = a1+ as(z —¢) + 2a3(x — ¢) + Znan z—c)" !

e (Integration) Given f as above, [ f(z)dx has a power series expansion obtained by by inte-
grating each term in the expansion of f(x):

)n—i—l

—C

/f(x)dx:C’—|—a0(x—c)—|—%($—c)2+(;2(:3—0)3 +1

for some constant C' depending on the choice of antiderivative of f.

Questions:

1. Find a power series representation for the function f(x) = arctan(5z). (Note: arctanz is the
inverse function to tanz.)

2. Use power series to approximate
1
/ sin(z?) da
0

(Note: sin(z?) is a function whose antiderivative is not an elementary function.)
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